Classifying Unseen Instances by Learning Class-Independent Similarity Functions
نویسندگان
چکیده
Zero-shot recognition (ZSR) deals with the problem of predicting class labels for target domain instances based on source domain side information (e.g. attributes) of unseen classes. We formulate ZSR as a binary prediction problem. Our resulting classifier is class-independent. It takes an arbitrary pair of source and target domain instances as input and predicts whether or not they come from the same class, i.e. whether there is a match. We model the posterior probability of a match since it is a sufficient statistic and propose a latent probabilistic model in this context. We develop a joint discriminative learning framework based on dictionary learning to jointly learn the parameters of our model for both domains, which ultimately leads to our class-independent classifier. Many of the existing embedding methods can be viewed as special cases of our probabilistic model. On ZSR our method shows 4.90% improvement over the state-of-the-art in accuracy averaged across four benchmark datasets. We also adapt ZSR method for zero-shot retrieval and show 22.45% improvement accordingly in mean average precision (mAP).
منابع مشابه
Learning Joint Feature Adaptation for Zero-Shot Recognition
Zero-shot recognition (ZSR) aims to recognize targetdomain data instances of unseen classes based on the models learned from associated pairs of seen-class source and target domain data. One of the key challenges in ZSR is the relative scarcity of source-domain features (e.g. one feature vector per class), which do not fully account for wide variability in target-domain instances. In this paper...
متن کاملClassification
Definition In Classification learning, an algorithm is presented with a set of classified examples or ‘‘instances’’ from which it is expected to infer a way of classifying unseen instances into one of several ‘‘classes’’. Instances have a set of features or ‘‘attributes’’ whose values define that particular instance. Numeric prediction, or ‘‘regression,’’ is a variant of classification learning...
متن کاملGalaxy-X: A Novel Approach for Multi-class Classification in an Open Universe
Classification is a fundamental task in machine learning and artificial intelligence. Existing classification methods are designed to classify unknown instances within a set of previously known classes that are seen in training. Such classification takes the form of prediction within a closed-set. However, a more realistic scenario that fits the ground truth of real world applications is to con...
متن کاملSynthesizing Samples for Zero-shot Learning
Zero-shot learning (ZSL) is to construct recognition models for unseen target classes that have no labeled samples for training. It utilizes the class attributes or semantic vectors as side information and transfers supervision information from related source classes with abundant labeled samples. Existing ZSL approaches adopt an intermediary embedding space to measure the similarity between a ...
متن کاملSynthesizing Samples for Zero-shot Learning
Zero-shot learning (ZSL) is to construct recognition models for unseen target classes that have no labeled samples for training. It utilizes the class attributes or semantic vectors as side information and transfers supervision information from related source classes with abundant labeled samples. Existing ZSL approaches adopt an intermediary embedding space to measure the similarity between a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1511.04512 شماره
صفحات -
تاریخ انتشار 2015